Warning! Do NOT Download Without a VPN!
Your IP Address is . Location is United States
Your Internet Provider and Government can track your download activities! Hide your IP ADDRESS with a VPN!
We strongly recommend using a VPN service to anonymize your torrent downloads. It's FREE!
START YOUR FREE TRIAL NOW!

HandsOn Mathematics For Deep Learning Build A Solid Mathematical Foundation For Training Efficient Deep Neural Networks 

Torrent Details 

 NAME
 HandsOn Mathematics for Deep Learning Build a solid mathematical foundation for training efficient deep neural networks.torrent
 CATEGORY
 Other
 INFOHASH
 d1df0ff27657bfdc30d46b9ff07c1f4e769b6814
 SIZE
 316 MB in 4 files
 ADDED
 Uploaded on 28062020 by our crawler pet called "Spidey".
 SWARM
 0 seeders & 0 peers
 RATING
 No votes yet.
Please login to vote for this torrent.
Description 

Visit Site: FreePaidBooks.online
HandsOn Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks
English  2020  364 Pages  True PDF, EPUB, MOBI  271.29 MB
A comprehensive guide to getting wellversed with the mathematical techniques for building modern deep learning architectures
Key Features
Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks
Learn the mathematical concepts needed to understand how deep learning models function
Use deep learning for solving problems related to vision, image, text, and sequence applications
Book Description
Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.
You’ll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multilayered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build fullfledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application.
By the end of this book, you’ll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
What you will learn
Understand the key mathematical concepts for building neural network models
Discover core multivariable calculus concepts
Improve the performance of deep learning models using optimization techniques
Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizer
Understand computational graphs and their importance in DL
Explore the backpropagation algorithm to reduce output error
Cover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)
Who this book is for
This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.
Table of Contents
Linear Algebra
Vector Calculus
Probability and Statistics
Optimization
Graph Theory
Linear Neural Networks
Feedforward Neural Networks
Regularization
Convolutional Neural Networks
Recurrent Neural Networks
Attention Mechanisms
Generative Models
Transfer and Meta Learning
Geometric Deep Learning
Discussion 

Comments 0
There are no comments yet.
Post Your Comment
To post your comment to this torrent, please login to our site.
Files in this torrent 

FILENAME  SIZE  

9781838647292HANDSON_MATHEMATICS_FOR_DEEP_LEARNING.pdf  50.7 MB  
9781838647292.epub  83 MB  
9781838647292.mobi  181.9 MB  
[FreePaidBooks.online] Join for free ebooks!.txt  126 B 
Alternative Torrents for 'Hands Mathematics for Deep Learning Build solid mathematical foundation for training efficient deep neural networks'. 

TORRENT NAME  ADDED  SIZE  SEEDS  PEERS  HEALTH 

7/1/2020  286 MB  0  0  
6/28/2020  316 MB  0  0 