Master Clustering Analysis For Data Science Using Python [UdemyLibrary.Com]

Torrent Details


Master Clustering Analysis for  Data Science using Python [UdemyLibrary.com]

NAME
Master Clustering Analysis for Data Science using Python [UdemyLibrary.com].torrent
CATEGORY
Other
INFOHASH
d3d3559feb3e8f921ec6b619df3ccad0382628bb
SIZE
1.6 GB in 71 files
ADDED
Uploaded on 26-10-2020 by our crawler pet called "Spidey".
SWARM
0 seeders & 0 peers
RATING
No votes yet.

Please login to vote for this torrent.


Description

Visit For More Courses and Tutorials  https://udemylibrary.com/



Udemy - Master Clustering Analysis for Data Science using Python







Learn to implement clustering algorithms using Python with practical examples and datasets



Source: Nouman Azam via Udemy

Release date: Last updated 8/2020

Video: h264, 1280×720

Audio: AAC, 44.1 KHz, 2 Ch

Language: English + .srt

Size: 1.3 GB

Duration: 5h 22m



covers, more info and reviews in suggested reading order:

PREVIEW





Discussion

Comments 0

Post Your Comment

Files in this torrent

FILENAMESIZE
1. Introduction to the Course/1. Introduction.mp416.3 MB
1. Introduction to the Course/1. Introduction.srt5.5 KB
2. KMeans Clustering/1. Code and Data.html121 B
2. KMeans Clustering/1.1 Code and Data.zip175.9 KB
2. KMeans Clustering/2. KMeans intuition.mp432.5 MB
2. KMeans Clustering/2. KMeans intuition.srt15.7 KB
2. KMeans Clustering/3. Tell us about the course.mp412.5 MB
2. KMeans Clustering/3. Tell us about the course.srt3.6 KB
2. KMeans Clustering/4. Choosing the right number of clusters.mp459.6 MB
2. KMeans Clustering/4. Choosing the right number of clusters.srt19.4 KB
2. KMeans Clustering/5. KMeans in Python (Part 1).mp486.8 MB
2. KMeans Clustering/5. KMeans in Python (Part 1).srt22.9 KB
2. KMeans Clustering/6. KMeans in Python (Part 2).mp450 MB
2. KMeans Clustering/6. KMeans in Python (Part 2).srt12.1 KB
2. KMeans Clustering/7. KMeans Limitations - (Part 1-Clusters with different sizes).mp466.8 MB
2. KMeans Clustering/7. KMeans Limitations - (Part 1-Clusters with different sizes).srt12.8 KB
2. KMeans Clustering/8. KMeans Limitations - (Part-2-Clusters with non spherical shapes).mp474.2 MB
2. KMeans Clustering/8. KMeans Limitations - (Part-2-Clusters with non spherical shapes).srt13.4 KB
2. KMeans Clustering/9. KMeans Limitations - (Part 3-Clusters with varying densities).mp432.3 MB
2. KMeans Clustering/9. KMeans Limitations - (Part 3-Clusters with varying densities).srt6.6 KB
3. Mean Shift Clustering/1. Code and Data.html121 B
3. Mean Shift Clustering/1.1 Code and Data.zip176.1 KB
3. Mean Shift Clustering/2. Intuition of Mean Shift.mp424.4 MB
3. Mean Shift Clustering/2. Intuition of Mean Shift.srt11.9 KB
3. Mean Shift Clustering/3. Mean Shift in Python.mp462.6 MB
3. Mean Shift Clustering/3. Mean Shift in Python.srt11.4 KB
3. Mean Shift Clustering/4. Mean Shift Performance in Cases where Kmean Fails (Part 1).mp467.1 MB
3. Mean Shift Clustering/4. Mean Shift Performance in Cases where Kmean Fails (Part 1).srt11.2 KB
3. Mean Shift Clustering/5. Mean Shift Performance in Cases where Kmean Fails (Part 2).mp489.7 MB
3. Mean Shift Clustering/5. Mean Shift Performance in Cases where Kmean Fails (Part 2).srt15 KB
4. DBSCAN Clustering/1. Code and Data.html121 B
4. DBSCAN Clustering/1.1 Code and Data.zip553.2 KB
4. DBSCAN Clustering/2. Intuition of DBSCAN.mp430.6 MB
4. DBSCAN Clustering/2. Intuition of DBSCAN.srt11.6 KB
4. DBSCAN Clustering/3. DBSCAN in python.mp478.1 MB
4. DBSCAN Clustering/3. DBSCAN in python.srt15.8 KB
4. DBSCAN Clustering/4. DBSCAN on clusters with varying sizes.mp443 MB
4. DBSCAN Clustering/4. DBSCAN on clusters with varying sizes.srt7.8 KB
4. DBSCAN Clustering/5. DBSCAN on clusters with different shapes and densities.mp479.7 MB
4. DBSCAN Clustering/5. DBSCAN on clusters with different shapes and densities.srt14.4 KB
5. Hierarchical Clustering/1. Code and Data.html121 B
5. Hierarchical Clustering/1.1 Code and Data.zip47.7 KB
5. Hierarchical Clustering/2. Hierarchical Clustering Intuition (Part 1).mp437.2 MB
5. Hierarchical Clustering/2. Hierarchical Clustering Intuition (Part 1).srt13.2 KB
5. Hierarchical Clustering/3. Hierarchical Clustering Intuition (Part 2).mp452.1 MB
5. Hierarchical Clustering/3. Hierarchical Clustering Intuition (Part 2).srt20.7 KB
5. Hierarchical Clustering/4. Hierachical Clustering in python.mp463.2 MB
5. Hierarchical Clustering/4. Hierachical Clustering in python.srt14 KB
6. HDBSCAN Clustering/1. Code and Data.html121 B
6. HDBSCAN Clustering/1.1 Code and Data.zip553.1 KB
6. HDBSCAN Clustering/2. Intuition of HDBSCAN.mp463.1 MB
6. HDBSCAN Clustering/2. Intuition of HDBSCAN.srt24.4 KB
6. HDBSCAN Clustering/3. HDBSCAN in Python.mp456.8 MB
6. HDBSCAN Clustering/3. HDBSCAN in Python.srt11.8 KB
6. HDBSCAN Clustering/4. HDBSCAN clustering on different sizes, shapes and densities.mp443.3 MB
6. HDBSCAN Clustering/4. HDBSCAN clustering on different sizes, shapes and densities.srt8.6 KB
6. HDBSCAN Clustering/5. HDBSCAN for handling noise.mp492.7 MB
6. HDBSCAN Clustering/5. HDBSCAN for handling noise.srt17.4 KB
7. Applications of Clustering/1. Code and Data.html121 B
7. Applications of Clustering/1.1 Code and Data.zip251.4 KB
7. Applications of Clustering/2. Image Compression (Part 1).mp454 MB
7. Applications of Clustering/2. Image Compression (Part 1).srt14.8 KB
7. Applications of Clustering/3. Image Compression (Part 2).mp477.4 MB
7. Applications of Clustering/3. Image Compression (Part 2).srt13.6 KB
7. Applications of Clustering/4. Clustering Sentences (Part 1).mp457 MB
7. Applications of Clustering/4. Clustering Sentences (Part 1).srt13.8 KB
7. Applications of Clustering/5. Clustering Sentences (Part 2).mp451.6 MB
7. Applications of Clustering/5. Clustering Sentences (Part 2).srt11.2 KB
7. Applications of Clustering/6. Classification using clustering.mp4131.9 MB
7. Applications of Clustering/6. Classification using clustering.srt30.7 KB
[UdemyLibrary.com] Join for free courses and tutorials.txt246 B

Alternative Torrents for 'Master Clustering Analysis for Data Science using Python UdemyLibrary.com'.

There are no alternative torrents found.