From predicting medical outcomes to managing retirement funds, we put a lot of trust in machine learning (ML) and artificial intelligence (AI) technology, even though we know they are vulnerable to attacks, and that sometimes they can completely fail us. In this course, instructor Diana Kelley pulls real-world examples from the latest ML research and walks through ways that ML and AI can fail, providing pointers on how to design, build, and maintain resilient systems.
Learn about intentional failures caused by attacks and unintentional failures caused by design flaws and implementation issues. Security threats and privacy risks are serious, but with the right tools and preparation you can set yourself up to reduce them. Diana explains some of the most effective approaches and techniques for building robust and resilient ML, such as dataset hygiene, adversarial training, and access control to APIs.
If You Need More Stuff, kindly Visit and Support Us -->> https://DevCourseWeb.com
Get More Tutorials and Support Us -->> https://CourseWikia.com
We upload these learning materials for the people from all over the world, who have the talent and motivation to sharpen their skills/ knowledge but do not have the financial support to afford the materials. If you like this content and if you are truly in a position that you can actually buy the materials, then Please, we repeat, Please, Support Authors. They Deserve it! Because always remember, without "Them", you and we won't be here having this conversation. Think about it! Peace...