Linkedin - Prompt Engineering With LangChain

Torrent Details

Linkedin - Prompt Engineering with LangChainLinkedin - Prompt Engineering with LangChain

NAME
Linkedin - Prompt Engineering with LangChain.torrent
CATEGORY
Other
INFOHASH
9fec447f8321d53aa89144c4bce28e48f8c18b6b
SIZE
1.3 GB in 48 files
ADDED
Uploaded on 03-06-2024 by our crawler pet called "Spidey".
SWARM
0 seeders & 0 peers
RATING
No votes yet.

Please login to vote for this torrent.


Description

This course provides a comprehensive yet concise introduction to LangChain, a powerful framework for large language model (LLM) applications. Starting with the basics of LLMs, instructor Harpreet Sahota explores the key features and capabilities of LangChain, showing you how to integrate it with various systems and gain hands-on experience in building practical applications. Whether you're a seasoned developer or a beginner, this course will equip you with a solid foundation in LangChain, setting the stage for more advanced topics and applications

Discussion

Comments 0

Post Your Comment

Files in this torrent

FILENAMESIZE
1. Introduction/1. Create powerful LLM driven applications.mp411.7 MB
2. Introduction to Language Models/1. What are language models.mp49.1 MB
3. LLMs and Text Generation/1. How do language models generate text.mp412.5 MB
3. LLMs and Text Generation/2. Base LLMs vs. instruction-tuned LLMs.mp435 MB
3. LLMs and Text Generation/3. Training fine-tuning and in-context learning.mp410.6 MB
3. LLMs and Text Generation/4. Prompt engineering.mp411.9 MB
4. Components of LangChain/1. What is LangChain.mp49.6 MB
4. Components of LangChain/2. LangChain overview.mp48.8 MB
4. Components of LangChain/3. Model I O- Interface with language models.mp485.2 MB
4. Components of LangChain/4. Retrieval- Interface with application-specific data.mp458.4 MB
4. Components of LangChain/5. Chains- Construct sequences of calls.mp474.8 MB
4. Components of LangChain/6. Agents- Let chains choose tools based on high-level directives.mp455.4 MB
4. Components of LangChain/7. Memory- Persist application state between runs of a chain.mp440.3 MB
5. Basics of Prompting/1. Prompt basics.mp44.2 MB
5. Basics of Prompting/2. Principles and tactics for prompting.mp430.7 MB
6. Prompt Templates Deep Dive/1. Introduction to prompt templates.mp426.6 MB
6. Prompt Templates Deep Dive/10. Few-shot prompt templates.mp433.9 MB
6. Prompt Templates Deep Dive/11. Few-shot prompt templates for chat.mp422.2 MB
6. Prompt Templates Deep Dive/12. Introduction to example selectors.mp410.7 MB
6. Prompt Templates Deep Dive/13. Length-based example selector.mp411.4 MB
6. Prompt Templates Deep Dive/14. Max marginal relevance example selector.mp417.4 MB
6. Prompt Templates Deep Dive/15. N-gram overlap example selector.mp430.1 MB
6. Prompt Templates Deep Dive/16. Semantic similarity example selector.mp413.1 MB
6. Prompt Templates Deep Dive/17. Partial prompt templates.mp415.7 MB
6. Prompt Templates Deep Dive/2. Multi-input prompt templates.mp420.4 MB
6. Prompt Templates Deep Dive/3. Chat prompt template.mp421.6 MB
6. Prompt Templates Deep Dive/4. Serializing prompts.mp410.5 MB
6. Prompt Templates Deep Dive/5. Zero-shot prompts.mp421.1 MB
6. Prompt Templates Deep Dive/6. Custom prompt templates.mp431.2 MB
6. Prompt Templates Deep Dive/7. Prompt pipelining.mp425.8 MB
6. Prompt Templates Deep Dive/8. Chat prompt pipelining.mp413.2 MB
6. Prompt Templates Deep Dive/9. Prompt composition.mp418 MB
7. Prompting Techniques/1. Chain of thought.mp438.9 MB
7. Prompting Techniques/2. Self-consistency.mp429.6 MB
7. Prompting Techniques/3. Self-ask.mp451 MB
7. Prompting Techniques/4. ReAct.mp439.7 MB
7. Prompting Techniques/5. RAG.mp480.7 MB
7. Prompting Techniques/6. FLARE.mp450.5 MB
7. Prompting Techniques/7. Plan and execute.mp456.8 MB
8. Prompt Management a.k.a. PromptOps/1. Prompt management.mp45.6 MB
8. Prompt Management a.k.a. PromptOps/2. LangSmith.mp43.8 MB
8. Prompt Management a.k.a. PromptOps/3. LangSmith walkthrough.mp424.4 MB
8. Prompt Management a.k.a. PromptOps/4. Prompt versioning in LangSmith.mp440.7 MB
8. Prompt Management a.k.a. PromptOps/5. LangSmith deep dive.mp448.5 MB
8. Prompt Management a.k.a. PromptOps/6. Managing prompt length for agents.mp433 MB
9. The LLM Landscape/1. Applications of language models.mp410.1 MB
9. The LLM Landscape/2. The LLM landscape.mp411.9 MB
Ex_Files_Prompt_Engineering_LangChain.zip221.7 KB

Alternative Torrents for 'Linkedin Prompt Engineering with LangChain'.

There are no alternative torrents found.